878
Views
56
CrossRef citations to date
0
Altmetric
Original

Interaction of the cannabinoid and opioid systems in the modulation of nociception

, PhD
Pages 143-151 | Published online: 11 Jul 2009
 

Abstract

Cannabinoids and opioids produce antinociceptive synergy. Cannabinoids such as Δ-9-tetrahydrocannabinol (THC) release endogenous opioids and endocannabinoids such as anandamide (AEA) also alter endogenous opioid tone. Opioids and cannabinoids bind distinct receptors that co-localize in areas of the brain involved with the processing of pain signals. Therefore, it is logical to look at interactions of these two systems in the modulation of both acute and chronic pain. These drugs are often co-abused. In addition, the lack of continued effectiveness of opioids due to tolerance development limits the use of such drugs. The cost to society and patients in terms of dollars, loss of productivity, as well as quality of life, is staggering. This review summarizes the data indicating that with cannabinoid/opioid therapy one may be able to produce long-term antinociceptive effects at doses devoid of substantial side effects, while preventing the neuronal biochemical changes that accompany tolerance. The clinical utility of modulators of the endocannabinoid system as a potential mimic for THC-like drugs in analgesia and tolerance-sparing effects of opioids is a critical future direction also addressed in the review.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.