48
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Generation of time delays: Simplified models of intracellular signalling in cerebellar Purkinje cells

, &
Pages 173-191 | Received 03 Aug 2005, Accepted 12 Dec 2005, Published online: 09 Jul 2009
 

Abstract

In many neuronal systems, information is encoded in temporal spike patterns. The recognition and storage of temporal patterns requires the generation and modulation of time delays between inputs and outputs. In cerebellar Purkinje cells, stimulation of metabotropic glutamate receptors (mGluRs) results in a delayed calcium and voltage response that has been implicated in classical conditioning and temporal pattern recognition. Here, we analyse and simplify a complex model of the intracellular signalling network that has been proposed as a substrate for this delayed response. We systematically simplify the original model, present a minimal model of time delay generation, and show that a delayed response can be produced by the combination of negative feedback and autocatalysis, without any intervening signalling steps that would contribute additive delays. The minimal model is analysed using phase plane methods, and classified as an excitable system. We discuss the implication of excitability for computations performed by intracellular signalling networks in general.

View correction statement:
Erratum

Notes

1 After training, the voltage response is a negative rather than a positive peak.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.