162
Views
37
CrossRef citations to date
0
Altmetric
Original

Complex cell pooling and the statistics of natural images

&
Pages 81-100 | Received 19 Aug 2005, Accepted 25 Apr 2007, Published online: 09 Jul 2009
 

Abstract

In previous work, we presented a statistical model of natural images that produced outputs similar to receptive fields of complex cells in primary visual cortex. However, a weakness of that model was that the structure of the pooling was assumed a priori and not learned from the statistical properties of natural images. Here, we present an extended model in which the pooling nonlinearity and the size of the subspaces are optimized rather than fixed, so we make much fewer assumptions about the pooling. Results on natural images indicate that the best probabilistic representation is formed when the size of the subspaces is relatively large, and that the likelihood is considerably higher than for a simple linear model with no pooling. Further, we show that the optimal nonlinearity for the pooling is squaring. We also highlight the importance of contrast gain control for the performance of the model. Our model is novel in that it is the first to analyze optimal subspace size and how this size is influenced by contrast normalization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.