32
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid Sneaky algorithm-based deep neural networks for Heart sound classification using phonocardiogram

, , &
Pages 1-26 | Received 12 Apr 2023, Accepted 09 Oct 2023, Published online: 28 Nov 2023
 

ABSTRACT

In the diagnosis of cardiac disorders Heart sound has a major role, and early detection is crucial to safeguard the patients. Computerized strategies of heart sound classification advocate intensive and more exact results in a quick and better manner. Using a hybrid optimization-controlled deep learning strategy this paper proposed an automatic heart sound classification module. The parameter tuning of the Deep Neural Network (DNN) classifier in a satisfactory manner is the importance of this research which depends on the Hybrid Sneaky optimization algorithm. The developed sneaky optimization algorithm inherits the traits of questing and societal search agents. Moreover, input data from the Phonocardiogram (PCG) database undergoes the process of feature extraction which extract the important features, like statistical, Heart Rate Variability (HRV), and to enhance the performance of this model, the features of Mel frequency Cepstral coefficients (MFCC) are assisted. The developed Sneaky optimization-based DNN classifier’s performance is determined in respect of the metrics, namely precision, accuracy, specificity, and sensitivity, which are around 97%, 96.98%, 97%, and 96.9%, respectively.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.