37
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation of G2-phase chromosomal radiosensitivity in hereditary non-polyposis colorectal cancer cells

, , , &
Pages 773-780 | Published online: 03 Jul 2009
 

Abstract

Purpose : To investigate whether cells from hereditary nonpolyposis colorectal cancer (HNPCC) patients, a genetic condition characterized by constitutional mutations in DNA mismatch repair genes and associated with predisposition to colorectal carcinoma (CRC), could present a higher G2 chromosomal radiosensitivity. It is generally hypothesized that cancer predisposition in HNPCC is associated with the loss of the wild-type allele in somatic cells, resulting in defective DNA mismatch repair but, to date, no data on G2 radiosensitivity have been reported for HNPCC. Materials and methods : Lymphoblastoid cell lines derived from six HNPCC patients heterozygous for MLH1, one HNPCC patient carrying a mutant MSH2 allele and three healthy controls were treated with 50 cGy of X-rays and sampled at various harvesting times, monitoring cell-cycle progression by 5-bromo-2-deoxyuridine (BrdUrd) incorporation in order to analyse chromosomal damage in the homogeneous G2 population. Results : There were no differences between lymphoblasts derived from patients in the frequency of G2 chromosomal aberrations induced by X-rays when compared with control cell lines. However, despite the absence of G2 radiosensitivity in HNPCC cells, lymphoblasts from patients heterozygous for MLH1 mutations showed a higher induction of chromatid exchanges. Conclusions : The observed possible incorrect rejoining of double-strand breaks in MLH1 heterozygotes would be an additional and important factor contributing to loss of heterozygosity in HNPCC patients.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.