79
Views
12
CrossRef citations to date
0
Altmetric
Original

Radiation-induced genomic instability in repair deficient mutants of Chinese hamster cells

, , , &
Pages 929-936 | Received 06 Jun 2005, Accepted 11 Jan 2006, Published online: 03 Jul 2009
 

Abstract

Purpose: To determine the role of single (SSB) and double strand break (DSB) repair in the induction and propagation of radiation-induced instability.

Materials and methods: Two defined hamster cell lines with known DNA repair deficiencies in DSB repair (XR-C1) and base excision repair (EM-C11) and the parental wild-type line (CHO-9) were used. The rate of micronucleus formation, apoptosis and survival were measured at 0, 7 and 14 days after X-ray radiation.

Results: An enhanced rate of production of damaged cells was observed in wild type and the repair deficient mutants after irradiation. This was cell type, dose and time-dependent. All cells demonstrated delayed death up to day 14 after irradiation along with an elevated apoptosis frequency. The yield of micronuclei was not significantly increased in the wild-type cells, but was in the mutant cells, over the dose and time range studied. For all three endpoints the increase in damage was most pronounced in the SSB deficient cell line.

Conclusions: SSB and/or oxidized base damage play a major role, rather than DSB, in radiation induced instability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.