13
Views
7
CrossRef citations to date
0
Altmetric
Original Article

E.S.R. Study of Spin-trapped Radicals Formed during the Photolysis of Aqueous Solutions of Acid Amides and H2O2

&
Pages 325-339 | Received 31 Aug 1977, Accepted 18 Oct 1977, Published online: 03 Jul 2009
 

Summary

Free radicals formed by the reactions of OH radicals with amides and their N-methylated derivatives in aqueous solutions have been studied. The OH radicals were produced by U.V.-photolysis of H2O2, and the short-lived amide radicals were converted to more stable nitroxide radicals by addition to a spintrap, tert-nitrosobutane. The spin-trapped radicals were identified by e.s.r. spectroscopy. For acetamide, chloroacetamide, malonamide, succinamide and propionamide, the observed radicals were formed by H-abstraction from the carbon atoms attached to the carbonyl group. The H atom attached to the carbonyl group was abstracted in formamide. For N-methyl acetamide, N,N-dimethyl acetamide and the corresponding formamide derivatives, H-abstraction occurred only from the N-methyl group. The non-equivalency of the amide protons was observed in the spin-trapped radicals for acetamide, formamide, malonamide, succinamide and propionamide. The identification of the site of OH attack on N-methyl amides is helpful for the study of radical formation in peptides and proteins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.