7
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Reactions of Reducing Radicals with Ribonuclease

, , &
Pages 825-839 | Received 21 Nov 1985, Accepted 17 Mar 1986, Published online: 03 Jul 2009
 

Summary

Radiation-induced reactions of hydrated electrons, formate- and ethanol radicals with ribonuclease were studied by pulse radiolysis and by electrophoresis. Initially formate radicals react rapidly and very specifically with the disulphide bonds of ribonuclease. This reaction leads to aggregation by intermolecular S-S-interchange, the process being more effective at pH 4, since formation and decay of S-S−·-radical anions increases with decreasing pH. With high doses additional unreducible aggregates are formed. Radical formation at the positively charged histidine residues seems to be involved. Hydrated electrons do not react as selectively as the formate radicals, but with several sites in native ribonuclease. Thus with low doses unreducible aggregates are formed. Electrophoresis shows that reaction of the electrons causes fragmentation of the peptide chain, when OH-radicals are scavenged. Very weak transient spectra and very little degradation result on reaction of ethanol radicals with ribonuclease.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.