20
Views
39
CrossRef citations to date
0
Altmetric
Original Article

Biochemical and Cellular Mechanisms of Low-dose Effects

, , &
Pages 23-37 | Published online: 03 Jul 2009
 

Summary

Low-dose irradiation is usually considered to be rather ineffective in producing biologically relevant effects. Yet, individual radiation absorption events within cell nuclei or whole cells interact stochastically with subcellular structures due to the multiple ionizations along primary or secondary particle tracks, depending on ionization density. Whereas radiation effects are usually seen in the context of structure and function of DNA, other cellular effects, perhaps influencing DNA by secondary biochemical mechanisms, also warrant attention. Thus, previous work from this laboratory with bone marrow that was obtained from whole-body exposed mice, has shown that single or few instantaneous radiation absorption events per cell from γ-rays produce an acute and temporary partial inhibition of the enzyme thymidine kinase; the effect appears within about 1 h after the event, reaches its maximum at approximately 4 h and disappears completely within another 6 h. This pattern of enzyme inhibition is fully concordant with the pattern of inhibition of uptake of tritiated thymidine or 125I-labelled deoxyuridine into the DNA; also concordant is a temporary increase in the concentration of free thymidine in the blood serum of the exposed mice. The particular response of thymidine kinase was considered to relate to some, thus far unknown, repair systems and/or to a defence mechanism of the hit cells.

In order to further elucidate the role of the acute and temporary partial inhibition of thymidine kinase in cellular metabolism, experiments were carried out in which mice were acutely exposed to 0·01 or 0·1 Gy and again exposed to the same dose at different times up to 12 h after the first exposure. At regular time intervals after the second exposure bone marrow cells were obtained and thymidine kinase activity was studied by various assays. The results indicate that the first acute irradiation conditioned the cells in such a way that the second acute irradiation produced either an enhanced inhibition and recovery of thymidine kinase activity, or no effect at all was seen, when the second irradiation was given between about 3 and 8 h after the first irradiation. From 8 to 12 h after the first irradiation the cells apparently resumed their original state, so that the second irradiation produced effects quite similar to those seen after a single irradiation in unconditioned cells.

Thus, acute low-dose irradiation producing few radiation absorption events per exposed cell induces a biochemical alteration that is indeed related to some kind of defence system in such a way that the cells become temporarily conditioned to tolerate the same dose a second time without reaction. The mechanisms involved in producing the response of thymidine kinase are likely to be nonspecific for irradiation because they may also be triggered by vitamin-E deficiency or strong static magnetic fields above 0·2 Tesla.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.