7
Views
33
CrossRef citations to date
0
Altmetric
Original Article

Stable Radioresistance in Ataxia-telangiectasia Cells Containing DNA from Normal Human Cells

&
Pages 667-675 | Published online: 03 Jul 2009
 

Summary

SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid that contains a normal human DNA library and a selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. After a three-part selection protocol for G418 resistance and radioresistance, a cell line stably resistant to ionizing radiation was recovered. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one that was stably resistant to radiation. Resistance to ionizing radiation of both the primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G2 chromatid aberrations; both cell lines retained AT-like radioresistant DNA synthesis. These results suggest that, because radioresistance in the transfected cells was not as great as that in normal human cells, the two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.