89
Views
265
CrossRef citations to date
0
Altmetric
Original Article

Rapid Translocation Frequency Analysis in Humans Decades after Exposure to Ionizing Radiation

, , , , , , , , , & show all
Pages 53-63 | Received 22 Oct 1991, Accepted 02 Feb 1992, Published online: 03 Jul 2009
 

Abstract

This paper presents an analysis of the utility of fluorescence in situ hybridization (FISH) with whole-chromosome probes for measurement of the genomic frequency of translocations found in the peripheral blood of individuals exposed to ionizing radiation. First, we derive the equation: Fp = 2·05fp(1 − fp)FG, relating the translocation frequency, Fp, measured using FISH to the genomic translocation frequency, FG, where fp is the fraction of the genome covered by the composite probe. We demonstrate the validity of this equation by showing that: (a) translocation detection efficiency predicted by the equation is consistent with experimental data as fp is changed; (b) translocation frequency dose-response curves measured in vitro using FISH agree well with dicentric frequency dose-response curves measured in vitro using conventional cytogenetic procedures; and (c) the genomic translocation frequencies estimated from FISH measurements for 20 Hiroshima A-bomb survivors and four workers exposed to ionizing radiation during the Y-12 criticality accident are approximately the same as the translocation frequencies measured using G-banding. We also show that translocation frequency dose response curves estimated using FISH are similar for Hiroshima A-bomb survivors and for first division lymphocytes irradiated in vitro. We conclude with a discussion of the potential utility of translocation frequency analysis for assessment of the level of acute radiation exposure independent of the time between analysis and exposure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.