15
Views
38
CrossRef citations to date
0
Altmetric
Original Article

Analysis of Mitotic Cell Death Caused by Radiation in Mouse Leukaemia L5178Y Cells: Apoptosis is the Ultimate Form of Cell Death Following Mitotic Failure

&
Pages 449-455 | Received 06 Jul 1993, Accepted 09 Dec 1993, Published online: 03 Jul 2009
 

Abstract

The appearance of various abnormal cells after irradiation was investigated in growing mouse leukaemia L5178Y cells. Morphologically defined apoptotic cells started to emerge at 10 h after irradiation and the frequency reached a peak at around 48 h being similar to the frequency of other abnormal cells, i.e. micronucleated, multinucleated and giant cells. Necrotic cells were rarely seen. The frequency of apoptosis and other abnormal cells depended on the radiation dose. The typical DNA ladder pattern for apoptosis was observed in the agarose gel electrophoretic analysis of the cells at 24–96 h postirradiation. A decline in the frequency of apoptotic cells occurred with longer incubation, which was associated with a sharp increase in cloning efficiency. Changes in the growth rate of the irradiated cell population during the postirradiation period could be reasonably well described by a simple model using the frequencies of apoptosis and other abnormal cells. The results suggest that apoptosis is the ultimate form of cell death via mitotic failure caused by relatively small doses of radiation in L5178Y cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.