22
Views
37
CrossRef citations to date
0
Altmetric
Original Article

UV-A Oxidative Damage Modified by Environmental Conditions in Escherichia Coli

Pages 293-299 | Received 17 Nov 1994, Accepted 05 May 1995, Published online: 03 Jul 2009
 

Abstract

The effect of sublethal fluences (50–200 kJ m−2) of UV-A radiation (320–400 nm) in bacterial cells is a transient growth inhibition related to photo-modified tRNA and is associated with changes in membrane structure and function. Higher UV-A fluences result in cell death due to the production of reactive oxygen species, so far undetected at sublethal doses. Oxidative mechanisms of toxicity induced by 120 kJ m−2 UV-A radiation can be recorded by ultra-weak chemiluminescence, useful in quantifying oxidative reactions. When Escherichia coli was exposed to UV-A stress at a fluence rate equivalent to that of the Sun in the biosphere (33 W m−2), chemiluminescence levels were proportional to the photo-damage. Chemiluminescence and photo-damage are linearly proportional and dependent on environmental conditions of the cells. It is postulated that in addition to tRNA photo-modification, UV-A alters the membrane structure of E. coli by oxidative damage, since changes in the membrane structure under different environmental conditions play a key role in the cell's response to UV-A injury.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.