5
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The effect of 125I decay at different stages of S-phase on survival, expression of micronuclei and chromosome aberrations in CHO cells

Pages 177-187 | Published online: 03 Jul 2009
 

Abstract

Chinese hamsterovary (CHO) cellswere synchronized in M phase by mitotic selection, and then re-synchronized with aphidicolin at the G 1/S phase border. The cells were labelled in early-S phase by 10 min exposure to 125I-iododeoxyuridine and then cultured (chased) in non-radioactive medium for 0.5, 3 or 5 h, followed by harvesting and freezing to accumulate the desired number of 125I decays. Cell damage was assessed by evaluating colony formation, micronucleus formation and chromosome aberrations. These biological estimators of damage showed that the cytocidal effect of 125I decay increased with the duration of the post-labelling chase period: the highest level of damage was found in cells from the 5 h chase period and the lowest in the cells from the 0.5 h chase period. Survival curves for the three chase periods displayed low-dose hyper-radiosensitivity for 0 to 20 125I decays cell- 1. The results indicate that the repair of DNA double-strand breaks (DSBs) may depend on the maturation stage of chromatin and an explanation of this finding is proposed which invokes the homologous recombination model for DSB repair.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.