433
Views
3
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Short-chain fatty acids, acetate and propionate, directly upregulate osteoblastic differentiation

, &
Pages 800-808 | Received 16 Jan 2022, Accepted 12 May 2022, Published online: 26 May 2022
 

Abstract

Short-chain fatty acids, including acetate, propionate, and butyrate are metabolites of dietary fibre produced by microbiota in the large intestine, have been proposed to contribute to effects on bone homeostasis. However, it is unclear whether they are used in osteoblasts and directly affect bone formation. We investigated whether short-chain fatty acids are absorbed in osteoblast cells and influence early osteoblastic differentiation using MC3T3-E1 cells. Acetate and propionate upregulated alkaline phosphatase activity, which is an osteoblast differentiation marker, and acetate upregulated alkaline phosphatase mRNA expression after treatment for 9 days, whereas butyrate did not in MC3T3-E1 cells. Butyrate was absorbed more rapidly and to a greater extent than acetate and propionate. These results indicate that short-chain fatty acids were used in osteoblastic cells, and particularly acetate and propionate directly upregulated differentiation in primary osteoblasts. Therefore, acetate and propionate might be useful for maintaining a positive balance of bone turnover.

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

The present study was supported by the Japan Society for the Promotion of Science KAKENHI, Grant Number JP19K11786.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.