477
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Calcium channels involved in neurotransmitter release at adult, neonatal and P/Q-type deficient neuromuscular junctions (Review)

, &
Pages 293-300 | Published online: 09 Jul 2009
 

Abstract

Different types of voltage-dependent calcium channels (VDCCs) have been recognized based on their molecular structure as well as their pharmacological and biophysical properties. One of these, the P/Q type, is the main channel involved in nerve evoked neurotransmitter release at neuromuscular junctions (NMJs) and many central nervous system synapses. However, under particular experimental or biological conditions, other channels can be involved. L-type VDCC presence at the NMJ has been demonstrated by the contribution to the perineural calcium currents (I Ca ) at adult mice Bapta-loaded NMJs. This is probably a result of a reduction in Ca 2+ inactivation. The L-type current was not coupled to neurotransmitter release, but became coupled, as demonstrated by the release of acetylcholine, after the inhibition of serine/threonine protein phosphatases with okadaic acid (OA). Thus, under these conditions, L-type channels were unmasked at Bapta- but not at Egta-loaded NMJs. This suggests that the speed, not the capacity, of the calcium chelator was decisive in preventing Ca 2+ -inactivation and facilitating the contribution to neurotransmitter release. At neonatal rat NMJs, N-type VDCCs were involved early during development whereas P/Q-type VDCCs play a main role at all stages of development. Furthermore, P/Q-type VDCCs were more efficiently coupled to neurotransmitter release than N-type VDCCs. This difference could be accounted for by a differential location of these channels at the release site. Neuromuscular transmission in P/Q-type calcium channel knock out ataxic mice jointly depends on both N-type and R-type channels and shows several altered properties including low quantal content. Thus, calcium channels may be recruited to mediate neurotransmitter release with a functional hierarchy where the P/Q channel seems to be the channel most suited to mediate exocytosis at NMJs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.