749
Views
19
CrossRef citations to date
0
Altmetric
Papers

Investigation of the structure and function of a Shewanella oneidensis arsenical-resistance family transporter

, , , , , , , , , , , & show all
Pages 691-701 | Received 02 Sep 2008, Published online: 09 Jul 2009
 

Abstract

The toxic metalloid arsenic is an abundant element and most organisms possess transport systems involved in its detoxification. One such family of arsenite transporters, the ACR3 family, is widespread in fungi and bacteria. To gain a better understanding of the molecular mechanism of arsenic transport, we report here the expression and characterization of a family member, So_ACR3, from the bacterium Shewanella oneidensis MR-1. Surprisingly, expression of this transporter in the arsenic-hypersensitive Escherichia coli strain AW3110 conferred resistance to arsenate, but not to arsenite. Purification of a C-terminally His-tagged form of the protein allowed the binding of putative permeants to be directly tested: arsenate but not arsenite quenched its intrinsic fluorescence in a concentration-dependent fashion. Fourier transform infrared spectroscopy showed that the purified protein was predominantly α-helical. A mutant bearing a single cysteine residue at position 3 retained the ability to confer arsenate resistance, and was accessible to membrane impermeant thiol reagents in intact cells. In conjunction with successful C-terminal tagging with oligohistidine, this finding is consistent with the experimentally-determined topology of the homologous human apical sodium-dependent bile acid transporter, namely 7 transmembrane helices and a periplasmic N-terminus, although the presence of additional transmembrane segments cannot be excluded. Mutation to alanine of the conserved residue proline 190, in the fourth putative transmembrane region, abrogated the ability of the transporter to confer arsenic resistance, but did not prevent arsenate binding. An apparently increased thermal stability is consistent with the mutant being unable to undergo the conformational transitions required for permeant translocation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.