228
Views
74
CrossRef citations to date
0
Altmetric
Original Article

Influence of structure on dye degradation with laccase mediator systems

, , , &
Pages 315-324 | Received 16 Jun 2004, Published online: 11 Jul 2009
 

Abstract

A new laccase was purified from Trametes hirsuta IMA2002. The laccase had a molecular mass of 62 kDa and an isoelectric point of pH 7. It had an optimum pH of 3.0 and an optimum temperature of 55°C. The laccase was quite stable at 30°C and pH 4.0 with a half-life of more than 100 hours. On ABTS, syringaldazide, and DMP the laccase showed KM and Kcat values of 75, 12 and 37 μM and 64, 83 and 54 s−1, respectively. The structurally diverse commercial dyes Indigo Carmine, Lanaset Blue 2R, Diamond Black PV 200 and Diamond Fast Brown were oxidized by the laccase. While the rate and extent of decolorization of the latter dye was significantly enhanced by the presence of different types of mediators, the structurally similar azo-dye Tartrazine was not oxidized. Lanaset Blue 2R, a commercial textile dye containing an anthrachinoid structural fragment acted similarly to anthrachinone sulfonic acid by strongly enhancing the rate of the decolorization reaction. Twenty two model azo-dyes based on the molecular framework of 2,7-dihydroxy-1-phenylazonaphtalene-3,6-disulfonic acid were synthesized and the kinetics of their laccase-catalyzed decolorization was studied. Hydroxy-substituted dyes were the most susceptible to enzyme/mediator action. All reactions were well described by Michaelis–Menten-like kinetics and the Hammett free energy linear relationship could be successfully applied to describe the influence of dye structure (substituents on the aromatic ring) on decolorization. Strongly electron withdrawing substituents such as a nitro-group in the meta-position (+0.7) resulted in positive σ-constants whereas electron donating groups such as para-methyl (−0.3) resulted in negative values for σ-constants.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.