308
Views
16
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Alkane activation by P450 oxygenases

&
Pages 186-193 | Published online: 11 Jul 2009
 

Abstract

The hydroxylation of alkane molecules, especially at terminal positions, is a challenging reaction. Enzymes that catalyze this reaction could be used to produce high-value compounds from aliphatic and alkyl-substituted substrates. However, until a few years ago, all known alkane hydroxylating enzymes were membrane-bound, and difficult to use. Recently, three bacterial P450 enzymes of the (soluble) CYP101 and CYP102 families were engineered to hydroxylate alkanes, but even after extensive efforts hydroxylation was mainly at sub-terminal positions. More recently, a new soluble P450 family (CYP153) was identified and characterized, which activates the terminal position of alkanes and alkyl-substituted compounds with very high regio-selectivity. The use of CYP153s in biotechnological applications is now being explored.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.