1,870
Views
358
CrossRef citations to date
0
Altmetric
Research Article

Replication Protein A (RPA): The Eukaryotic SSB

, &
Pages 141-180 | Published online: 29 Sep 2008
 

Abstract

Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is highly conserved in eukaryotes. RPA plays essential roles in many aspects of nucleic acid metabolism, including DNA replication, nucleotide excision repair, and homologous recombination. In this review, we provide a comprehensive overview of RPA structure and function and highlight the more recent developments in these areas. The last few years have seen major advances in our understanding of the mechanism of RPA binding to DNA, including the structural characterization of the primary DNA-binding domains (DBD) and the identification of two secondary DBDs. Moreover, evidence indicates that RPA utilizes a multistep pathway to bind single-stranded DNA involving a particular molecular polarity of RPA, a mechanism that is apparently used to facilitate origin denaturation. In addition to its mechanistic roles, RPA interacts with many key factors in nucleic acid metabolism, and we discuss the critical nature of many of these interactions to DNA metabolism. RPA is a phosphorylation target for DNA-dependent protein kinase (DNA-PK) and likely the ataxia telangiectasia-mutated gene (ATM) protein kinase, and recent observations are described that suggest that RPA phosphorylation plays a significant modulatory role in the cellular response to DNA damage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.