378
Views
28
CrossRef citations to date
0
Altmetric
Original

Molecular analysis of light-chain switch and acute lymphoblastic leukemia transformation in two follicular lymphomas: Implications for lymphomagenesis

, , , , , , , & show all
Pages 1523-1534 | Received 21 Jun 2005, Accepted 25 Jan 2006, Published online: 01 Jul 2009
 

Abstract

We observed novel transformations of follicular lymphoma (FL), first, a switch in immunoglobulin (Ig) light chain, and second, transformation of FL to acute lymphoblastic leukemia (ALL). Each set of tumors shared a common clonal origin, as demonstrated by expression of identical, unique CDR IIIH sequences, shared somatic mutations in JH, and identical bcl-2 translocation breakpoints of microdissected ALL cells. Molecular analysis of lambda V-gene expression demonstrated lambda-bearing cells in the original kappa tumor, while expansion of the lambda subclone at relapse occurred after active immunotherapy targeting the Ig receptor. These exceptional cases are compatible with a more contemporary model of lymphomagenesis in which critical events originate from genetic mechanisms which normally occur in germinal center (GC) B cells and challenge the current paradigm of parallel generation of subclones from an early, pre-GC precursor. It is also possible that the outgrowth of these variants was a consequence of immunoselection.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.