220
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Selective delivery of folate–PEG-linked, nanoemulsion-loaded aclacinomycin A to KB nasopharyngeal cells and xenograft: Effect of chain length and amount of folate–PEG linker

, , &
Pages 660-667 | Received 05 Feb 2008, Accepted 14 May 2008, Published online: 03 Dec 2008
 

Abstract

To investigate the use of folate-targeted nanoemulsion-loaded aclacinomycin A (ACM) to folate receptor (FR)-positive cells, we attempted to optimize the targeting ability of nanoemulsions by modifying the chain length and amount of the folate–PEG linker. Folate-linked, nanoemulsion-loaded ACM were formulated with 0.24 mol% of folate-poly (ethylene glycol)3400- (folate–PEG3400-) and folate–PEG5000-distearoylphosphatidylethanolamine (DSPE), and 0.03 mol% of folate–PEG5000–DSPE in nanoemulsions. Selective FR-mediated uptake was achieved in a human nasopharyngeal tumor cell line, KB, which overexpresses FR, but not in a human hepatoblastoma cell line, (FR(-)) HepG2. At the same amount of folate modification, the association with KB cells was increased with increasing the PEG-chain length. The association of 0.03 and 0.24 mol% folate–PEG5000-linked nanoemulsions with cells was 5- and 3.3-fold higher than that of non-folate nanoemulsion, respectively, while their cytotoxicity was similar. Both 0.03 and 0.24 mol% folate–PEG5000-linked nanoemulsions and non-folate nanoemulsion following intravenous injection inhibited tumor growth more significantly than ACM solution on day 24 following tumor inoculation (p < 0.01). This study demonstrates that a folate-linked nanoemulsion is feasible for tumor-targeted ACM delivery, and that folate modification with a sufficiently long PEG-chain and a small amount of nanoemulsion is an effective way of targeting nanoemulsion to tumor cells.

View correction statement:
Erratum

Acknowledgments

The author would like to thank Dr Kazuhiro Kubo at NOF Corporation (Tokyo, Japan) for providing amino-PEG–DSPE. This work was financially supported in part by the Promotion and Mutual Aid Corporation for Private Schools of Japan, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.