90
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Fumarate exerted an antihypertensive effect and reduced kidney injury molecule (KIM)-1 expression in deoxycorticosterone acetate-salt hypertension

ORCID Icon, , &
Pages 555-564 | Received 23 Feb 2021, Accepted 07 Apr 2021, Published online: 21 Apr 2021
 

ABSTRACT

Background: The tricarboxylic (TCA) acid cycle provides the energy needed for regulatory functions in the cardio-renal system. Recently, a genetic defect in the TCA cycle enzyme, fumarase hydratase, altered L-arginine metabolism and exacerbated hypertension in salt-sensitive rats. This study evaluated the effect of fumarate and its possible link to L-arginine metabolism in deoxycorticosterone (DOCA)-salt hypertension, a non-genetic model of hypertension.Method: Hypertension was induced with DOCA (25 mg/kg s.c, twice weekly) + 1% NaCL in uninephrectomised rats placed on fumarate (1 g/L, ad libitum). Blood pressure was measured in conscious rats via carotid cannulation. Biochemical and western blot analyses were carried out on kidney fractions.Results: Fumarate reduced mean blood pressure (198 ± 5 vs 167 ± 7 mmHg, p < .01), increased nitric oxide levels in the renal cortex (36.1 ± 2 vs 61.3 ± 4 nM/µg) and medulla (27.4 ± 1 vs 54.1 ± 2 nM/µg) of DOCA-salt rats (p < .01). Consistent with this, arginase activity was reduced (threefold) in the renal medulla but not cortex of DOCA-salt rats. Fumarate increased superoxide dismutase activity in the medulla (p < .001) of DOCA-hypertensive rats. However, catalase activity was exacerbated by fumarate in both renal cortex (4.5 ± 1 vs 11.2 ± 1) and medulla (3.7 ± 1 vs 16.3 ± 1 units/mg) of DOCA-salt rats (p < .001). Proteinuria (64.6%), kidney injury molecule-1 expression and kidney weight were reduced in DOCA-hypertensive rats treated with fumarate (p< .05). However, there was a paradoxical increase in TGF-β expression in fumarate-treated DOCA-salt rats. Conclusion: These data show that fumarate attenuated hypertension, renal injury and improved the redox state of the kidney in DOCA/salt hypertension by mechanisms involving selective reduction of L-arginine metabolism.

Acknowledgments

None.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

This work was supported with National Institutes of health (NIH) grant, 5 G12 MD007605

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.