37
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Oxidation of tetrahydrobiopterin by peroxynitrite or oxoferryl species occurs by a radical pathway

, , , , &
Pages 709-721 | Received 12 Jul 2000, Published online: 07 Jul 2009
 

Abstract

The molecular mechanisms of tetrahydrobiopterin (BH4) oxidation by peroxynitrite (ONOO-) was studied using ultra-weak chemiluminescence, electron paramagnetic resonance (EPR) and UV-visible diodearray spectrophotometry, and compared to BH4 oxidation by oxoferryl species produced by the myoglobin/hydrogen peroxide (Mb/H2O2) system. The oxidation of BH4 by ONOO- produced a weak chemiluminescence, which was altered by addition of 50 mM of the spin trap α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN). EPR spin trapping demonstrated that the reaction occurred at least in part by a radical pathway. A mixture of two spectra composed by an intense six-line spectrum and a fleeting weak nine-line one was observed when using ONOO-. Mb/H2O2 produced a short-living light emission that was suppressed by the addition of BH4. Simultaneous addition of POBN, BH4 and Mb/H2O2 produced the same six-line EPR spectrum, with a signal intensity depending on BH4 concentration. Spectrophotometric studies confirmed the rapid disappearance of the characteristic peak of ONOO- (302 nm) as well as substantial modifications of the initial BH4 spectrum with both oxidant systems. These data demonstrated that BH4 oxidation, either by ONOO- or by Mb/H2O2, occurred with the production of activated species and by radical pathways.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.