52
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Is homocysteine a pro-oxidant?

, , , , , , & show all
Pages 499-505 | Received 19 Dec 2000, Published online: 07 Jul 2009
 

Abstract

High plasma homocysteine concentrations have been found to be associated with atherosclerosis and thrombosis of arteries and deep veins. The oxidative damage mediated by hydrogen peroxide production during the metal-catalyzed oxidation of homocysteine is to date considered to be one of the major pathophysiological mechanisms for this association.

In this work, a very sensitive and accurate method was employed to measure the effective production of H2O2 during homocysteine oxidation. Furthermore, the interaction of homocysteine with powerful oxidizing species (hypochlorite, peroxynitrite, ferrylmyoglobin) was evaluated in order to ascertain the putative pro-oxidant role of homocysteine.

Our findings indicate that homocysteine does not produce H2O2 in a significant amount (1/4000 mole/mole ratio of H2O2 to homocysteine). Moreover, homocysteine strongly inhibits the oxidation of luminol and dihydrorhodamine by hypochlorite or peroxynitrite and rapidly reduces back ferrylmyoglobin, the oxidizing species, to metmyoglobin.

All these results should, in our opinion, lead to a rethinking of the commonly held view that homocysteine oxidation is one of the main causative mechanisms of cardiovascular damage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.