114
Views
76
CrossRef citations to date
0
Altmetric
Research Article

Identification of the Binding Site of Methylglyoxal on Glutathione Peroxidase: Methylglyoxal Inhibits Glutathione Peroxidase Activity via Binding to Glutathione Binding Sites Arg 184 and 185

, , , , , , , & show all
Pages 205-211 | Published online: 07 Jul 2009
 

Abstract

Methylglyoxal (MG), a physiological &#102 -dicarbonyl compound is derived from glycolytic intermediates and produced during the Maillard reaction. The Maillard reaction, a non-enzymatic reaction of ketones and aldehydes with amino group of proteins, contributes to the aging of proteins and to complications associated with diabetes. In our previous studies (Che, et al. (1997) "Selective induction of heparin-binding epidermal growth factor-like growth factor by MG and 3-deoxyglucosone in rat aortic smooth muscle cells. The involvement of reactive oxygen species formation and a possible implication for atherogenesis in diabetes". J. Biol. Chem., 272 , 18453-18459), we reported that MG elevates intracellular peroxide levels, but the mechanisms for this remain unclear. Here, we report that MG inactivates bovine glutathione peroxidase (GPx), a major antioxidant enzyme, in a dose- and time-dependent manner. The use of BIAM labeling, it was showed that the selenocysteine residue in the active site was intact when GPx was incubated with MG. MALDI-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and protein sequencing examined the possibility that MG modifies arginine residues in GPx. The results show that Arg 184 and Arg 185, located in the glutathione binding site of GPx was irreversively modified by treatment with MG. Reactive dicarbonyl compounds such as 3-deoxyglucosone, glyoxal and phenylglyoxal also inactivated GPx, although the rates for this inactivation varied widely. These data suggest that dicarbonyl compounds are able to directly inactivate GPx, resulting in an increase in intracellular peroxides which are responsible for oxidative cellular damage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.