45
Views
57
CrossRef citations to date
0
Altmetric
Research Article

PGE 1 Protection against Apoptosis Induced by d -galactosamine is Not Related to the Modulation of Intracellular Free Radical Production in Primary Culture of Rat Hepatocytes

, , , , , , , , , & show all
Pages 345-355 | Published online: 07 Jul 2009
 

Abstract

d -galactosamine ( d -GalN) toxicity is a useful experimental model of liver failure in human. It has been previously observed that PGE 1 treatment reduced necrosis and apoptosis induced by d -GalN in rats. Primary cultured rat hepatocytes were used to evaluate if intracellular oxidative stress was involved during the induction of apoptosis and necrosis by d -GalN (0-40 mM). Also, the present study investigated if PGE 1 (1 &#119 M) was equally potent reducing both types of cell death. The presence of hypodiploid cells, DNA fragmentation and caspase-3 activation were used as a marker of hepatocyte apoptosis. Necrosis was measured by lactate dehydrogenase (LDH) release. Oxidative stress was evaluated by the intracellular production of hydrogen peroxide (H 2 O 2 ), the disturbances on the mitochondrial transmembrane potential (MTP), thiobarbituric-reacting substances (TBARS) release and the GSH/GSSG ratio. Data showed that intermediate range of d -GalN concentrations (2.5-10 mM) induced apoptosis in association with a moderate oxidative stress. High d -GalN concentration (40 mM) induced a reduction of all parameters associated with apoptosis and enhanced all those related to necrosis and intracellular oxidative stress, including a reduction of GSH/GSSG ratio and MTP in comparison with d -GalN (2.5-10 mM)-treated cells. Although PGE 1 reduced apoptosis induced by d -GalN, it was not able to reduce the oxidative stress and cell necrosis induced by the hepatotoxin in spite to its ability to abolish the GSH depletion.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.