140
Views
68
CrossRef citations to date
0
Altmetric
Research Article

Cellular Redox Activity of Coenzyme Q 10 : Effect of CoQ 10 Supplementation on Human Skeletal Muscle

, , , , , , , & show all
Pages 445-453 | Published online: 07 Jul 2009
 

Abstract

In this paper, we report results obtained from a continuing clinical trial on the effect of coenzyme Q 10 (CoQ 10 ) administration on human vastus lateralis (quadriceps) skeletal muscle. Muscle samples, obtained from aged individuals receiving placebo or CoQ 10 supplementation (300 mg per day for four weeks prior to hip replacement surgery) were analysed for changes in gene and protein expression and in muscle fibre type composition. Microarray analysis (Affymetrix U95A human oligonucleotide array) using a change in gene expression of 1.8-fold or greater as a cutoff point, demonstrated that a total of 115 genes were differentially expressed in six subject comparisons. In the CoQ 10 -treated subjects, 47 genes were up-regulated and 68 down-regulated in comparison with placebo-treated subjects. Restriction fragment differential display analysis showed that over 600 fragments were differentially expressed using a 2.0-fold or greater change in expression as a cutoff point. Proteome analysis revealed that, of the high abundance muscle proteins detected (2086 &#45 115), the expression of 174 proteins was induced by CoQ 10 while 77 proteins were repressed by CoQ 10 supplementation. Muscle fibre types were also affected by CoQ 10 treatment; CoQ 10 -treated individuals showed a lower proportion of type I (slow twitch) fibres and a higher proportion of type IIb (fast twitch) fibres, compared to age-matched placebo-treated subjects. The data suggests that CoQ 10 treatment can act to influence the fibre type composition towards the fibre type profile generally found in younger individuals. Our results led us to the conclusion that coenzyme Q 10 is a gene regulator and consequently has wide-ranging effects on over-all tissue metabolism. We develop a comprehensive hypothesis that CoQ 10 plays a major role in the determination of membrane potential of many, if not all, sub-cellular membrane systems and that H 2 O 2 arising from the activities of CoQ 10 acts as a second messenger for the modulation of gene expression and cellular metabolism.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.