119
Views
61
CrossRef citations to date
0
Altmetric
Research Article

2,4,6-Trinitrotoluene-induced Reproductive Toxicity via Oxidative DNA Damage by its Metabolite

, , , , , , , , , , & show all
Pages 555-566 | Published online: 07 Jul 2009
 

Abstract

Several epidemiological studies and animal experiments showed that 2,4,6-trinitrotoluene (TNT), a commonly used explosive, induced reproductive toxicity. To clarify whether the toxicity results from the interference of endocrine systems or direct damage to reproductive organs, we examined the effects of TNT on the male reproductive system in Fischer 344 rats. TNT administration induced germ cell degeneration, the disappearance of spermatozoa in seminiferous tubules, and a dramatic decrease in the sperm number in both the testis and epididymis. TNT increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in sperm whereas plasma testosterone levels did not decrease. These results suggest that TNT-induced toxicity is derived from direct damage to spermatozoa rather than testosterone-dependent mechanisms. To determine the mechanism of 8-oxodG formation in vivo, we examined DNA damage induced by TNT and its metabolic products in vitro. 4-Hydroxylamino-2,6-dinitrotoluene, a TNT metabolite, induced Cu(II)-mediated damage to 32 P-labeled DNA fragments and increased 8-oxodG formation in calf thymus DNA, although TNT itself did not. DNA damage was enhanced by NADH, suggesting that NADH-mediated redox reactions involving TNT metabolites enhanced toxicity. Catalase and bathocuproine inhibited DNA damage, indicating the involvement of H 2 O 2 and Cu(I). These findings suggest that TNT induces reproductive toxicity through oxidative DNA damage mediated by its metabolite. We propose that oxidative DNA damage in the testis plays a role in reproductive toxicity induced by TNT and other nitroaromatic compounds.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.