29
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Hydroxylation of Deoxyguanosine at 5′ Site of GG and GGG Sequences in Double-stranded DNA Induced by Carbamoyl Radicals

, &
Pages 667-675 | Published online: 07 Jul 2009
 

Abstract

Free radicals generated by chemicals can cause sequence-specific DNA damage and play important roles in mutagenesis and carcinogenesis. Carbamoyl group (CONH 2 ) and its derived groups (CONR 2 ) occur as natural products and synthetic chemical compounds. We have investigated the DNA damage by carbamoyl radicals · (CONH 2 ), one of carbon-centered radicals. Electron spin resonance (ESR) spectroscopic study has demonstrated that carbamoyl radicals were generated from formamide by treatment with H 2 O 2 plus Cu(II), and from azodicarbonamide by treatment with Cu(II). We have investigated sequence specificity of DNA damage induced by carbamoyl radicals using 32 P-labeled DNA fragments obtained from the human c-Ha- ras -1 and p 53 genes. Treatment of double-stranded DNA with carbamoyl radicals induced an alteration of guanine residues, and subsequent treatment with piperidine or Fpg protein led to chain cleavages at 5'-G of GG and GGG sequences. Carbamoyl radicals enhanced Cu(II)/H 2 O 2 -mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in double-stranded DNA more efficiently than that in single-stranded DNA. These results shows that carbamoyl radicals specifically induce hydroxylation of deoxyguanosine at 5' site of GG and GGG sequences in double-stranded DNA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.