16
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Spinnokinetic Analyses of Blood Disposition and Biliary Excretion of Nitric Oxide (NO)-Fe(II)-N-(Dithiocarboxy)sarcosine Complex in Rats: BCM-ESR and BEM-ESR Studies

, , &
Pages 1061-1072 | Received 13 Jan 2004, Published online: 07 Jul 2009
 

Abstract

Nitric oxide (NO) is well known to have a wide variety of biological and physiological functions in animals. On the basis of the fact that Fe(II)-dithiocarbamates react with NO, a Fe(II)-N-(dithiocarboxy)sarcosine complex (Fe(II)-DTCS) was proposed as a trapping agent for endogenous NO. However, quantitative pharmacokinetic investigation for NO-Fe(II)-dithiocarbamate complexes in experimental animals has been quite limited. This paper describes the results on the quantitative pharmacokinetic features of a NO-Fe(II)-N-DTCS in both the blood and bile of rats following intravenous (i.v.) administration of the complex. For this purpose, we applied two in vivo methods, i.e. (1) in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) which previously developed, and (2) in vivo biliary excretion monitoring-electron spin resonance (BEM-ESR). We monitored real-time ESR signals due to nitrosyl-iron species in the circulating blood and bile flow. The ESR signal due to NO-Fe(II)-DTCS was stable in biological systems such as the fresh blood and bile. In in vivo BCM- and BEM-ESR, the pharmacokinetic parameters were calculated on the basis of the two-compartment and hepatobiliary transport models. The studies also revealed that the compound is widely distributed in the peripheral organs and partially excreted into the bile. We named a kinetic method to follow spin concentrations as spinnokinetics and this method will be useful for detecting and quantifying the endogenously generated NO in Fe(II)-DTCS administered animals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.