1,449
Views
272
CrossRef citations to date
0
Altmetric
Original Article

Review
Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids

Pages 797-815 | Received 23 Nov 2004, Published online: 07 Jul 2009
 

Abstract

In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from l-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects consitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.