135
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Superoxide and hydrogen peroxide formation during enzymatic oxidation of DOPA by phenoloxidase

, , &
Pages 853-858 | Received 10 Nov 2004, Published online: 07 Jul 2009
 

Abstract

Generation of superoxide anion and hydrogen peroxide during enzymatic oxidation of 3-(3,4-dihydroxyphenyl)-dl-alanine (DOPA) has been studied. The ability of DOPA to react with has been revealed. EPR spectrum of DOPA-semiquinone formed upon oxidation of DOPA by was observed using spin stabilization technique of ortho-semiquinones by Zn2+ ions. Simultaneously, the oxidation of DOPA by was found to produce hydrogen peroxide (H2O2). The analysis of H2O2 formation upon oxidation of DOPA by using 1-hydroxy-3-carboxy-pyrrolidine (CP-H), and SOD as competitive reagents for superoxide provides consistent values of the rate constant for the reaction between DOPA and being equal to (3.4±0.6)×105 M−1 s−1.

The formation of H2O2 during enzymatic oxidation of DOPA by phenoloxidase (PO) has been shown. The H2O2 production was found to be SOD-sensitive. The inhibition of H2O2 production by SOD was about 25% indicating that H2O2 is produced both from superoxide anion and via two-electron reduction of oxygen at the enzyme. The attempts to detect superoxide production during enzymatic oxidation of DOPA using a number of spin traps failed apparently due to high value of the rate constant for DOPA interaction with

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.