336
Views
37
CrossRef citations to date
0
Altmetric
Original

Singlet oxygen quenching by anthocyanin's flavylium cations

, , &
Pages 885-891 | Received 06 Aug 2008, Published online: 07 Jul 2009
 

Abstract

The quenching of singlet molecular oxygen (1O2) by the flavylium cation form of six widespread anthocyanin derivatives: cyanidin 3-glucoside (CG), cyanidin 3-rutinoside (CR), cyanidin 3-galactoside (CGL), malvidin (M), malvidin 3-glucoside (MG) and malvidin 3,5-diglucoside (MDG) was studied in 1% HCl methanol solution by time-resolved phosphorescence detection (TRPD) of 1O2 and photostationary actinometry using perinaphthenone and methylene blue as sensitizers, respectively. The average value of the total (k0) and chemical (kc) quenching rate constants were ∼ 4×108 m−1 s−1 and 3×106 m−1 s−1, respectively, indicating the good performance of the studied anthocyanins as catalytic quenchers of 1O2. The quenching efficiency was larger for malvidin than for cyanidin derivatives, probably by the extra electron-donating methoxy group in ring B of the malvidin derivatives; and it was also dependent on the number and type of glycosylated substitution. As observed for other phenolic-like derivatives, the quenching of 1O2 by anthocyanins was mediated by a charge-transfer mechanism, which was modulated by the total number of –OR substituents that increases the electron-donating ability of these compounds.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.