588
Views
43
CrossRef citations to date
0
Altmetric
Original

Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid

, , , , &
Pages 565-571 | Received 09 Dec 2008, Published online: 21 Jul 2009
 

Abstract

Piperidine and pyrrolidine nitroxyl radicals (nitroxide) contain unpaired electrons and have been widely recognized as antioxidants, contrast agents, spin probes, radiation protective agents and polymerization mediators. Nitroxyl radicals can react with free radicals and reductants and their reactivities depend on the basic structure of the nitroxyl radicals themselves. However, reductants easily reduce these radicals and they lose their paramagnetic nature and function. Therefore, the aim of this study was to develop various functional nitroxyl radicals, particularly focusing on stability towards AsA through the improvement of the synthetic route for a series of 2,6-substituted nitroxyl radicals. Tetraethyl-substituted piperidine nitroxyl radical 8 exhibited resistance to AsA reduction and 2,6-dispiro-4′,4′′-dipyrane-piperidin-4-one-N-oxyl 5 had a second-order rate constant 10-times greater than those of hydroxyl-TEMPO and oxo-TEMPO. The 2,6-substituted compound offers various reactivities towards AsA and the possibility to be used as a new antioxidant, contrast agent and radical polymerizer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.