1,587
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Radical-induced purine lesion formation is dependent on DNA helical topology

, , , , , , , & show all
Pages S91-S101 | Received 01 Jun 2016, Accepted 02 Oct 2016, Published online: 28 Nov 2016
 

Abstract

Herein we report the quantification of purine lesions arising from gamma-radiation sourced hydroxyl radicals (HO) on tertiary dsDNA helical forms of supercoiled (SC), open circular (OC), and linear (L) conformation, along with single-stranded folded and non-folded sequences of guanine-rich DNA in selected G-quadruplex structures. We identify that DNA helical topology and folding plays major, and unexpected, roles in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA), along with tandem-type purine lesions 5′,8-cyclo-2′-deoxyguanosine (5′,8-cdG) and 5′,8-cyclo-2′-deoxyadenosine (5′,8-cdA). SC, OC, and L dsDNA conformers together with folded and non-folded G-quadruplexes d[TGGGGT]4 (TG4T), d[AGGG(TTAGGG)3] (Tel22), and the mutated tel24 d[TTGGG(TTAGGG)3A] (mutTel24) were exposed to HO radicals and purine lesions were then quantified via stable isotope dilution LC-MS/MS analysis. Purine oxidation in dsDNA follows L > OC ≫ SC indicating greater damage towards the extended B-DNA topology. Conversely, G-quadruplex sequences were significantly more resistant toward purine oxidation in their unfolded states as compared with G-tetrad folded topologies; this effect is confirmed upon comparative analysis of Tel22 (∼50% solution folded) and mutTel24 (∼90% solution folded). In an effort to identify the accessibly of hydroxyl radicals to quadruplex purine nucleobases, G-quadruplex solvent cavities were then modeled at 1.33 Å with evidence suggesting that folded G-tetrads may act as potential oxidant traps to protect against chromosomal DNA damage.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.