407
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer

, , , , , & show all
Pages 324-334 | Received 17 Nov 2018, Accepted 21 Jan 2019, Published online: 18 Feb 2019
 

Abstract

The thunder god vine (Tripterygium wilfordii Hook. F) is traditionally used for inflammation-related diseases in traditional Chinese medicine. In recent years, celastrol (a natural compound from the root of the thunder god vine) has attracted great interest for its potential anticancer activities. The free radical nitric oxide (NO) is known to play a critical role in colorectal cancer growth by promoting tumour angiogenesis. However, how celastrol influences the NO pathway and its mechanism against colorectal cancer is largely unknown. In this study, we investigated the effects and mechanism of celastrol on nitric oxide synthase (NOS) and the angiogenesis pathway in colorectal cancer. Our data show that celastrol inhibited HT-29 and HCT116 cell proliferation, migration, and NOS activity in the cytoplasm. The antiproliferation activity of celastrol was associated with the inhibition of iNOS and eNOS in colorectal cancer cells. Treatment with celastrol inhibited colorectal cancer cell growth and migration, and was associated with suppression of the expression of key genes (TYMP, CDH5, THBS2, LEP, MMP9, and TNF) and proteins (IL-1b, MMP-9, PDGF, Serpin E1, and TIMP-4) involved in the angiogenesis pathway. In addition, combinational use of celastrol with 5-fluorouracil, salinomycin, 1400 W, and L-NIO showed enhanced inhibition of colorectal cancer cell proliferation and migration. In sum, our study suggests that celastrol could suppress colorectal cancer cell growth and migration, likely through suppressing NOS activity and inhibiting the angiogenesis pathway.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the Science and Technology Project of Social Development of Shaanxi Province, China (No. 2012K13-01-05), the Science and Technology Project of Social Development of Shaanxi Province, China (No. 2016SF-139), the Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University, China (No. XJTU1AHCR2014-035) and National Cancer Institute grant R15CA195499 (S. Qian), USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.