302
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C–H bond vs. O–H bond

ORCID Icon
Pages 1125-1134 | Received 24 Sep 2019, Accepted 30 Oct 2019, Published online: 19 Nov 2019
 

Abstract

This paper describes a theoretical comparative study of the antiradical properties of six aromatic compounds namely eugenol (EUG), safrole (SAF), myristicin (MYR), carvacrol (CAR), cinnamaldehyde (CIN), and isoeugenol (ISO) found in antioxidant essential oils. Using density functional theory (DFT) calculations, some structural characteristics such as molecular descriptors, frontier molecular orbitals, and molecular electrostatic potential have been studied. Three main antiradical mechanisms, hydrogen atom transfer (HAT), single electron transfer proton transfer (SETPT, and sequential proton loss electron transfer (SPLET) have been also investigated. In addition, the Gibbs free energies related to the reactions of the studied compounds with two reactive oxidant species (HO and HOO) have been computed. Throughout the study, the implicitly of polar and nonpolar solvents (water and benzene) has been taken into account. It was found that EUG, SAF, CIN, and ISO scavenge free radicals by means of a CH bond, while CAR and ISO by means of an OH bond. In the gas and benzene phases, all the studied compounds prefer to undergo HAT mechanism, while in water, SPLET is more favoured for CIN, CAR, and ISO and both HAT and SPLET are possible for EUG, SAF, and MYR. In all the studied mediums, the sequence of the antiradical potential is: MYRSAFISOEUG > CAR > CIN. This order is in line with the available experimental results.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.