263
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Inhomogeneous generation of hydroxyl radicals in hydrogen peroxide solution induced by ultraviolet irradiation and in a Fenton reaction system

, &
Pages 481-489 | Received 18 Jun 2020, Accepted 01 Sep 2020, Published online: 21 Sep 2020
 

Abstract

The density of hydroxyl radical (•OH) generation by degeneration of hydrogen peroxide (H2O2) during UVB irradiation and in a Fenton reaction system was estimated. The purpose of this study was to evaluate whether these reaction systems generate spatially uniform or inhomogeneous •OH from H2O2 in the reaction mixture. A series of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) solutions of several concentrations (0.13‒1661 mM) were prepared. For UVB irradiation, 1 μl of 98 mM, 980 mM, or 9.8 M H2O2 solution was added to a 100-μl aliquot of DMPO solution, and the reaction mixture was irradiated with UVB. For the Fenton reaction, 1 μl of 98 mM H2O2 and 1 μl of 100 mM FeSO4 were added to a 100-μl aliquot of DMPO solution. After UVB irradiation or adding FeSO4, the entire volume of the reaction mixture was drawn into PTFE tubing and measured by X-band EPR. The DMPO-OH concentration in the reaction mixture was plotted versus the molecular density of DMPO, and the density of •OH generation was estimated from an inflection point on the plotted profile. The local densities of the UV-induced •OH in the H2O2 water solutions depended on the concentration of H2O2 in the solution, and were likely localized. The energy absorption process of photons was suspected to occur in a step-wise manner in a limited volume. •OH generation in the Fenton reaction system was expected to be uniformly distributed, but inhomogeneous •OH generation was observed at the molecular level.

Acknowledgements

The authors are grateful to Dr. Murali C. Krishna (NCI, NIH, MD, USA) for gifting TEMPOL-H.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by JSPS KAKENHI Grant Number JP18K07739 (M. U.) and JP18K07695 (K. M.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.