198
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Transferrin-mediated increase of labile iron Pool following simulated ischemia causes lipid peroxidation during the early phase of reperfusion

ORCID Icon, ORCID Icon & ORCID Icon
Pages 713-729 | Received 20 Jul 2022, Accepted 12 Jan 2023, Published online: 15 Feb 2023
 

Abstract

Heart ischemia/reperfusion (I/R) injury is related to iron content. However, the occurrence and mechanism of changes in labile iron pool (LIP) during I/R is debatable. Moreover, the identity of the iron form dominant in LIP during I/R is unclear. Herein, we measured changes of LIP during simulated ischemia (SI) and reperfusion (SR), in which ischemia was simulated in vitro with lactic acidosis and hypoxia. Total LIP did not change in lactic acidosis, whereas LIP, especially Fe3+, increased in hypoxia. Under SI, accompanied by hypoxia with acidosis, both Fe2+ and Fe3+ were significantly increased. Increased total LIP was maintained at 1 h post-SR. However, the Fe2+ and Fe3+ portion was changed. The increased Fe2+ was decreased, and conversely the Fe3+ was increased. BODIPY oxidized signal increased and through the time-course these changes correlated with blebbing of cell membrane and SR-induced LDH release. These data suggested lipid peroxidation occurred via Fenton’s reaction. The experiments using bafilomycin A1 and zinc protoporphyrin suggested no role of ferritinophagy or heme oxidation in the increase of LIP during SI. The extracellular source, transferrin assessed using serum transferrin bound iron (TBI) saturation showed that the depletion of TBI reduced SR-induced cell damages and additive saturation of TBI accelerated SR-induced lipid peroxidation. Furthermore, Apo-Tf dramatically blocked the increase of LIP and SR-induced damages. In conclusion, Tf-mediated iron induces the increase of LIP during SI, and it causes Fenton reaction-mediated lipid peroxidation during the early phase of SR.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [NRF2018R1C1B6003879] and a National Research Foundation of Korea (NRF) MRC grant [2018R1A5A2020732].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.