44
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Induction of antioxidant stress proteins in vascular endothelial and smooth muscle cells: Protective action of vitamin C against atherogenic lipoproteins

, , , , &
Pages 309-318 | Received 17 Mar 1999, Published online: 07 Jul 2009
 

Abstract

Elevated levels of lipid peroxidation and increased formation of reactive oxygen species within the vascular wall in atherosclerosis can overwhelm cellular antioxidant defence mechanisms. Accumulating evidence implicates oxidatively modified low density lipoproteins (LDL) in vascular dysfunction in atherosclerosis and oxidized LDL have been localized with in atherosclerotic lesions. We here report that human oxidatively modified LDL induce expression of ‘antioxidant-like’ stress proteins in vascular cells, involving increases in the activity of l-cystine transport, glutathione synthesis, heme oxygenase-1 and the murine stress protein MSP23. Moreover, treatment of human arterial smooth muscle cells with the dietary antioxidant vitamin C markedly attenuates adaptive increases in endogenous antioxidant gene expression and affords protection against smooth muscle cell apoptosis induced by moderately oxidized LDL. As vascular cell death is a key feature of atherosclerotic lesions and may contribute to the plaque ‘necrotic’ core, cap rupture and thrombosis, our findings suggest that the cytoprotective actions of vitamin C could limit plaque instability in advanced atherosclerosis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.