2,329
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Optimization of hyaluronan-enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation

, , &
Article: 2162162 | Received 14 Nov 2022, Accepted 19 Dec 2022, Published online: 01 Jan 2023
 

Abstract

To design and evaluate hyaluronan-based cubosomes loaded with bromfenac sodium (BS) for ocular application to enhance the corneal permeation and retention in pterygium and cataract treatment. BS-loaded cubosomes were prepared by the emulsification method, employing 23 full factorial design using Design-Expert® software. Glycerol monoolein (GMO) and poloxamer 407 (P407) as lipid phase and polyvinyl alcohol (PVA) as stabilizer were the used ingredients. The optimized formulation (OBC; containing GMO (7% w/w), P407 (0.7% w/w) and PVA (2.5% w/w)) was further evaluated. OBC had an entrapment efficiency of 61.66 ± 1.01%, a zeta potential of −30.80 ± 0.61 mV, a mean particle size of 149.30 ± 15.24 nm and a polydispersity index of 0.21 ± 0.02. Transmission electron microscopy confirmed its cubic shape and excellent dispersibility. OBC exhibited high stability and no ocular irritation that was ensured by histopathology. Ex vivo permeation study showed a significant increase in drug deposition and permeability parameters through goat cornea, besides, confocal laser microscopy established the superior permeation capability of OBC, as compared to drug solution. In vivo pharmacokinetics in aqueous humor indicated higher AUC0-tlast (18.88 µg.h/mL) and mean residence time (3.16 h) of OBC when compared to the marketed eye drops (7.93 µg.h/mL and 1.97 h, respectively). Accordingly, hyaluronan-enriched cubosomes can be regarded as a promising carrier for safe and effective topical ocular delivery.

Disclosure statement

Authors declare no conflicts of interest; authors alone are responsible for the content