294
Views
8
CrossRef citations to date
0
Altmetric
Original

Trapping Hemoglobin in Rigid Matrices: Fine Tuning of Oxygen Binding Properties by Modulation of Encapsulation Protocols

, , &
Pages 69-79 | Published online: 24 Aug 2009
 

Abstract

Encapsulation of hemoglobin in a biocompatible matrix is a potential strategy for obtaining blood substitutes. Such a system would retain most of the immunogenic and functional properties of the physiologically relevant oxygen carrier but would prevent protein extravasation and dimer/dimer dissociation. We applied this approach by entrapping hemoglobin in wet nanoporous silica gel, in the presence and absence of allosteric effectors. Silica gels, although not suitable for intravenous perfusion, are inert and optically transparent, thus allowing a full characterization of the functional and structural properties of encapsulated hemoglobin by spectroscopic techniques. Results indicate that hemoglobin molecules, entrapped using different protocols, exhibit an oxygen affinity that can be modulated between 12 and 140 torr. This tunability could be exploited to meet distinct clinical needs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.