7
Views
1
CrossRef citations to date
0
Altmetric
Articles

Ca2+ Channels and Chronic Hypoxia

, &
Pages 657-670 | Received 29 Mar 2006, Accepted 19 May 2006, Published online: 10 Jul 2009
 

Abstract

Many chronic lung diseases are associated with prolonged exposure to alveolar hypoxia, resulting in the development of pulmonary hypertension. While the exact mechanisms underlying the pathogenesis of hypoxic pulmonary hypertension remain poorly understood, a key role for changes in Ca2+ homeostasis has emerged. Intracellular Ca2+ concentration controls a variety of pulmonary vascular cell functions, including contraction, gene expression, growth, barrier function and synthesis of vasoactive substances. Several studies indicate that prolonged exposure to hypoxia causes alterations in the expression and activity of several Ca2+ handling pathways in pulmonary arterial smooth muscle cells. In contrast, the effect of chronic hypoxia on Ca2+ homeostasis in pulmonary arterial endothelial cells is relatively unexplored. In this review, we discuss data from our laboratory and others describing the effects of prolonged hypoxia on pulmonary vascular smooth muscle and endothelial cell Ca2+ homeostasis and the various Ca2+ channels and handling pathways involved in these responses. We will also highlight future directions of investigation that might improve our understanding of the response of pulmonary vascular cells to chronic hypoxia.

The authors acknowledge the excellent technical assistance from Clark Undem and Trevor Luke in contributing to this work. The work was supported by grants from the NIH (HL67191 and HL51912) and the American Heart Association (AHA0430037N).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.