417
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Metabolic Roles of the M3 Muscarinic Acetylcholine Receptor Studied with M3 Receptor Mutant Mice: A Review

, , , , , , , , & show all
Pages 93-108 | Published online: 10 Oct 2008
 

Abstract

The M3 muscarinic acetylcholine (ACh) receptor (M3 mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the Gq family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M3 mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M3 receptors in pancreatic β -cells indicated that β -cell M3 mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through β -cell M3 mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M3 mAChR knockout mice showed that the absence of M3 receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M3 receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.