140
Views
78
CrossRef citations to date
0
Altmetric
Short communication

Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer's disease

, , , &
Pages 203-209 | Received 27 Jan 2004, Accepted 28 May 2004, Published online: 22 Jan 2010
 

Abstract

Oxidative damage to DNA may play an important role in both normal ageing and in neurodegenerative diseases. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species have been intensively studied in Alzheimer's disease. Although the role of oxidative stress in the aetiology of Alzheimer's disease is still not clear, the detection of an increased damage status in the cells of patients could have important therapeutic implications. The levels of oxidative damage in peripheral lymphocytes of 24 Alzheimer's disease patients and of 21 age-matched controls were determined by comet assay applied to freshly isolated blood samples with oxidative lesion-specific DNA repair endonucleases (endonuclease III for oxidized pyrimidines, formamidopyrimidine glycosylase for oxidized purines). It was demonstrated that Alzheimer's disease is associated with elevated levels of oxidized pyrimidines and purines (p<0.0001) as compared with age-matched control subjects. It was also demonstrated that the comet assay is useful as a biomarker of oxidative DNA damage when used with oxidative lesion-specific enzymes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.