7
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A novel action of minocycline: Inhibition of human immunodeficiency virus type 1 infection in microglia

, , , , , & show all
Pages 284-292 | Published online: 10 Jul 2009
 

Abstract

Human immunodeficiency virus type 1 (HIV-1) infection of the brain produces a characteristic disease called acquired immunodeficiency syndrome (AIDS) dementia in which productive infection and inflammatory activation of microglia and macrophages play a central role. In this report, the authors demonstrate that minocycline (MC), a second-generation tetracycline with proven safety and penetration to the central nervous system, potently inhibited viral production from microglia. Inhibition of viral release was sustained through the entire course of infection and even when the drug exposure was limited to the first day of infection. Minocycline was effective even at low viral doses, and against R5- and X4R5-HIV, as well as in single-cycle reporter virus assays. Electrophoretic mobility shift analysis showed that minocycline inhibited nuclear factor (NF)-κ B activation in microglia. HIV-1 long terminal repeat (LTR)-promoter activity in U38 cells was also inhibited. These results, combined with recently demonstrated in vivo anti-inflammatory effects of MC on microglia, suggest a potential utility for MC as an effective adjunct therapy for AIDS dementia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.