35
Views
2
CrossRef citations to date
0
Altmetric
Original

Aquaporin 4 is increased in association with human immunodeficiency virus dementia: Implications for disease pathogenesis

, , , , , , & show all
Pages 535-543 | Received 06 Apr 2005, Accepted 25 Sep 2005, Published online: 10 Jul 2009
 

Abstract

Changes in astrocyte shape and function are known to occur in association with human immunodeficiency virus (HIV) dementia (HIVD). However, the causes and consequences of such changes are not completely understood. In vitro data suggest that changes in the expression of aquaporin 4 (AQP4), the aquaporin subtype expressed by astrocytes, can significantly influence cell shape and physiology. In the present study, the authors therefore investigated the possibility that AQP4 levels may be altered in HIVD. Using Western blot, the authors show that immunoreactivity for AQP4 is elevated in brain homogenates from the mid frontal gyrus of patients who died with HIVD (P < .005 HIV seronegative versus HIVD). Of interest, a significant increase was also observed in homogenates from HIV-infected individuals without dementia (P < .05 HIV seronegative versus neurologically normal HIV seropositive). In the present study the authors also examined the stimulated expression of AQP4 in cultured cells. Previous in vitro studies have shown that AQP4 expression may be increased by stimuli that induce cytoskeletal changes and/or the activation of p38 mitogen-activated protein (MAP) kinase. The authors therefore focused on tumor necrosis factor (TNF)-α, which has been linked to p38 MAP kinase activation, and thrombin, which may also induce changes in the actin cytoskeleton. Both may be elevated with HIVD. Again using Western blot, the authors show an increase in both AQP4 and phosphorylated p38 MAP kinase in homogenates from TNF-α- and thrombin-stimulated organotypic cerebellar and spinal cord cultures. Together, these studies suggest that AQP4 expression may be altered in HIVD and/or in response to exogenous proteinases. Additional studies may be warranted to determine whether altered AQP4 expression represents a protective and/or maladaptive response to central nervous system (CNS) inflammation.

The authors would like to thank Liping Guo for immunohistochemistry, Dr. Anita Venkakatarama for assistance with diagnostic criteria, and Drs. Daniel Gorelick and Peter Agre for anti-AQP4. This work was funded by the National Institutes of Health (MH 07028901 and NS44897 to KC and JCM, respectively).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.