313
Views
38
CrossRef citations to date
0
Altmetric
Original

In vitro analysis of the interactions between preadipocytes and endothelial cells in a 3D fibrin matrix

, , , &
Pages 141-148 | Published online: 10 Jul 2009
 

Abstract

The volume‐persistent survival of transplanted adipose tissue in vivo relies on early vascularization, due to an otherwise early induction of apoptosis of the centrally located cells. Thus, one way to enable the early formation of a capillary network resulting in a sufficient perfusion of the transplanted construct might be the co‐transplantation of autologous preadipocytes with endothelial cells. To investigate preadipocyte–endothelial cell interaction, three‐dimensional proliferation‐ and angiogenesis assays were performed in vitro. Proliferation rates of co‐cultured endothelial cells and preadipocytes suspended in a fibrin matrix were elucidated by Alamarblue assays. The spheroid angiogenesis model was applied for analyzing the effects of vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) (produced by preadipocytes) as well as the impact of cell‐cell interaction between preadipocytes and endothelial cells and fibrin matrix on endothelial cell migration. Preadipocytes proliferated in fibrin glue, whereas endothelial cells underwent apoptosis. By co‐culturing, both cell types demonstrated an increased proliferation rate. Preadipocytes provoked migration of endothelial cells. Blocking bFGF and/or VEGF led to a significant decrease of migration. Changes in fibrin structure were followed by migration of single cells instead of sprouting. An appropriate fibrin matrix as well as already differentiated endothelial cells are necessary for preadipocytes to develop their angiogenic activity via bFGF and VEGF.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.