1,286
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Possible mechanisms involved in the anti-nociceptive effects of hydro-ethanolic leaf extract of Ziziphus abyssinica

, , ORCID Icon, &
Pages 1962-1971 | Received 23 Mar 2017, Accepted 11 Jul 2017, Published online: 20 Jul 2017
 

Abstract

Context: Various parts of Ziziphus abyssinica Hochst ex. A. Rich (Rhamnaceae) have been used in Ghanaian and African traditional medicine as an analgesic. However, there are little scientific data to support the anti-nociceptive effects of the hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) as well as the possible mechanisms involved in its anti-nociceptive effects.

Purpose: To predict possible nociceptive pathways involved in the anti-nociceptive effects of EthE.

Materials and methods: The effect of EthE (30, 100 and 300 mg/kg) on intraplantar injection of pain mediators such as interleukin-1β, tumour necrosis factor-α, prostaglandin E2 and bradykinin was evaluated in male Sprague Dawley rats using Randall–Selitto test for 5 h. The effect of specific antagonists to the opioidergic, adenosinergic, ATP-sensitive K+ channels, nitric oxide, serotonergic, muscarinic, adrenergic and voltage-gated calcium channel on the anti-nociceptive effect of EthE (100 mg/kg) was evaluated using the formalin test in male imprinting control region (ICR) mice for 1 h.

Results: Pretreatment of the rats with EthE significantly reversed the hypernociception induced by intraplantar injection of TNF-α (F4,120 = 10.86, p < 0.0001), IL-1β (F4,120 = 14.71, p < 0.0001), bradykinin (F4,80 = 12.52, p < 0.0001) and prostaglandin E2 (F5,144 = 6.165, p = 0.0001). The anti-nociceptive effect exhibited by EthE in the formalin test was reversed by systemic administration of NG-l-nitro-arginine methyl ester, naloxone, theophylline and glibenclamide.

Conclusions: EthE inhibits hypernociception induced by TNF-α, IL-1β, bradykinin and prostaglandin E2. EthE exhibited anti-nociceptive effects possibly mediated through opioidergic, adenosinergic, ATP-sensitive potassium channels and nitric oxide cyclic GMP pathways.

Acknowledgements

Authors are grateful to Prof. Martins Ekor and the technical staff of the Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, KNUST.

Disclosure statement

The authors report no conflicts of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.